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Abstract: In order to test whether the assumption of homoscedasticity is valid or not for Rwanda Corporate 

Income tax, we estimated a correctly specified Autoregressive Integrated Moving Average (ARIMA) model of the 

underlying time series, this helped to remove the linear dependence in the series. To test for Autoregressive 

Conditional Heteroscedasticity (ARCH) effects the residuals of the mean equation from the ARIMA model have 

been used.  It was verified through the Autocorrelation Function (ACF), Partial Autocorrelation Function (PACF) 

and Ljung-Box Q-statistics that the residuals of the mean equation did not show any significant serial correlation 

and that the model provided a good fit. The most appropriate specification model the volatility of Corporate 

Income tax collections in Rwanda was found to be a GARCH (1,1) model given the characteristics of the time 

series and the overall fit of the model. The autocorrelation functions of the residuals and squared residuals were 

also examined to confirm the model adequacy.  

Keywords: Volatility, Corporate income tax, Autoregressive, and Heteroscedasticity.  

I.   INTRODUCTION 

Constant variance in the residuals, also known as homoscedasticity, is one of the assumptions in the classic normal linear 

regression model. This assumption does not always hold in practice, however, as volatility may be clustered around a 

certain level during certain periods and move towards another level during other periods. For example, Corporate Income 

Tax (CIT) collections in Rwanda maintain a non-linear relationship with calculated tax liability (Total amount of tax that 

an entity is legally obligated to pay to an authority as a result of the occurrence of a taxable event), which can be mainly 

attributed to the structure of the Income Tax Act as it relates to the impact of tax loss carry forwards and foreign currency 

gains/losses on corporate profitability as well as the role of special tax treatment for certain sectors.  

This would have the consequence that accounting profits do not necessarily extend to tax liability. Given the impact of 

these factors, especially during periods of low economic activity, one would expect an increasing level of volatility in tax 

collected from companies during these periods, as corporate profits become an unreliable indicator for actual tax 

collected. 

It could therefore be helpful in certain instances to model the conditional variance of corporate income tax (CIT) 

collections as opposed to only using the long-run (unconditional) variance, given that the variance does not remain 

constant over the measured period. 

For many years in Rwanda as in other countries taxes plays the important role in economic development. They have 

different functions such as; to collect funds to be used in financing government works (financial function), promoting 

national economic development (economic function), and promoting the social welfare of the population (Social 

function). Regarding income taxes on corporations, nearly all countries assess them, but the provisions and rates differ 

widely. Since industrialized countries generally have larger corporate sectors than less-developed countries, corporation 
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income taxes in developed countries tend to be greater in relation to national income and total government revenue, 

except in major mineral-producing areas of less-developed countries.  

Variations in growth and cyclicality of revenues arise from two factors; one is the industry mix and performance of 

industries within a country. Another important factor is the composition of each country’s tax portfolio. Countries choose 

from a variety of tax instruments when designing their tax structure, including general sales, selective sales, personal 

income, corporate income, license, property, and severance taxes (same as mining royalties in Rwanda). Each of these tax 

instruments responds differently to upturns and downturns in the economy. For example, a sales tax on food is fairly 

stable because people will buy food in good times and in bad. However, tax revenues from capital gains depend largely on 

the stock market’s performance and thus can be volatile. The problem for Revenue Authorities trying to predict revenues 

is that stock market fluctuations and other cyclical events have a larger impact on incomes at the top, causing revenues 

from income taxes to vary widely from year to year. Therefore, this research intends to model Rwanda Corporate Income 

tax (CIT) by using Conditional volatility model (i.e. ARCH-GARCH model). 

II.     REVIEW OF PREVIOUS STUDIES ON THE SUBJECT OF STUDY 

Autoregressive Conditional Heteroscedasticity (ARCH) and General Autoregressive Conditional Heteroscedasticity 

(GARCH) models have become very popular in that they enable the econometrician to estimate the variance of a time 

series at a particular point in time. Clearly, asset pricing models indicate that the risk premium will depend on the 

expected return and the variance of that return. The relevant measure is the risk over the holding period, not the 

unconditional risk. Similarly, a portfolio manager who uses value-at-risk (VaR) might be unwilling to hold a portfolio 

with a 5% chance of losing $1 million. The assessment of the risk should be determined using the conditional distribution 

of asset returns. To use Engle’s example of the importance of using the conditional variance rather than the unconditional 

variance, consider the nature of the wage-bargaining process. Clearly, firms and unions need to forecast the inflation rate 

over the duration of the labor contract. Economic theory suggests that the terms of the wage contract will depend on the 

inflation forecasts and the uncertainty concerning the accuracy of these forecasts. Let        denotes the conditional 

expected rate of inflation for     and let    
  denotes the conditional variance. If parties to the contract have rational 

expectations, the terms of the contract will depend on         and    
  as opposed to the unconditional mean or the 

unconditional variance. 

The rational expectations hypothesis asserts that agents do not waste useful information. In forecasting any time series, 

rational agents use the conditional distribution, rather than the unconditional distribution of the time series. Hence, any 

test of the wage bargaining model above that uses the historical variance of the inflation rate would be inconsistent with 

the notion that rational agents make use of all available information (i.e., conditional means and variances). 

Engle’s 2003 Nobel Prize (shared with Clive Granger) is a testament to the importance of ARCH models. Theoretical 

models using variance as a measure of risk (such as mean-variance analysis) can be tested using the conditional variance. 

As such, the growth in the use of ARCH/GARCH methods has been nothing short of impressive. In fact, there are so 

many types of models of conditional volatility that it is common practice to refer to the entire class of models as ARCH or 

GARCH models. 

III.   METHODOLOGY 

According to Enders (2010), one can attempt to forecast the variance inherent in corporate income tax collections using a 

this model;              , where        represents the variance of corporate income tax collections at time t+1,      ~ 

N(0,δ
2
) is a white noise process with variance    and    is an explanatory variable at time t. When    is considered to be a 

constant, the variance of CIT simplifies to a white noise process and is considered homoscedastic. 

Assuming that    is not a constant, the assumption of homoscedasticity is not valid anymore, and the variance of        

conditional on the value of independent variable    can be expressed as follows:    (      |  )    
    .  

Based on this relation, the variance of        will vary directly with   
 . In practice, the above specification is modified 

and estimated in logarithmic form to obtain a linear regression equation of the following form:   (    )     

    (    )    . 

A problem with this linear regression specification, apart from the fact that    affects the mean of   (    ), is that a 

specific event or factor is assumed to be the reason for the change in variance. In addition, since a linear regression 
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equation was estimated, the assumption of constant variance needs to hold, which does not make this specification helpful 

for the purposes of modeling conditional volatility. 

ARIMA Processes: 

The ARMA process    with AR of order p and MA of order q (ARMA(p, q)) is illustrated as by the following 

equation;                                         . The process is stable and stationary if α(z) ≠ 0 for 

|z| ≤1, and it is invertible if m(z) ≠ 0 for |z| ≤1. If the process is stable, it has a pure (possibly infinite order) MA 

representation from which the autocorrelations can be obtained. Conversely, if the process is invertible, it has a pure 

(infinite order) AR representation. For mixed processes with nontrivial AR and MA parts, the autocorrelations and partial 

autocorrelations both do not have a cutoff point but taper off to zero gradually. A stochastic process    is called an 

ARIMA(p,d,q) process (   ARIMA(p,d,q)) if it is I(d) and the d times differenced process has an ARMA(p,q) 

representation, that is      ARMA(p,q). For processes with distinct seasonality, so-called seasonal models are 

sometimes considered.  

Autoregressive Conditional Heteroscedasticity (ARCH) Processes: 

Robert Engle (1982) provides a way of modeling the mean and variance of a series at the same time. Continuing from the 

equation in the previous section (CIT collections in Rwanda), should the variance of the residuals be heteroscedastic in 

nature, these movements in the variance can be approximated by an ARMA (i.e. white noise) process. The conditional 

variance can for example then be represented as an AR(q) process using the squares of the estimated residuals, as shown 

in Enders (2014):   
           

        
          

    . 

Where    follows a white noise process (i.e. a random process of random variables that are uncorrelated, have mean zero, 

and a finite variance). This type of equation is known as an autoregressive conditional heteroscedastic model or ARCH 

model. In the case where the estimated coefficients of    up until    are not significantly different from zero, the 

estimated variance will equal the constant   . The above equation can then be used to forecast the conditional variance. 

Two additional considerations arise from the above specification. First, maximum likelihood is the preferred estimation 

method when estimating the mean and variance simultaneously. Second, it is better to specify    in a multiplicative form 

as opposed to additive. As a result, the following set of higher-order ARCH (q) processes was considered by Engle 

(1982):      √       
 

       
  , Where    mimics a white noise process such that its variance equals one,    and the 

elements of the error process      are independent of each other.   ,  , ...    are constants such that   >0 and 0 

≤  ,…,   ≤1, It can be shown that the    process exhibits a zero mean and contains no autocorrelation. In addition, the 

unconditional mean and variance are not affected by the    process, while the conditional mean of the    process equals 

zero. It is the conditional variance of the     process, however, that has important implications. The conditional variance 

of    can be expressed as a function of     
  and a constant in the case of an ARCH (1) model, as shown in Enders (2014): 

    
 |                      

 . It will therefore follow that a large value of     
  will result in a large conditional 

variance. It is necessary to restrict the coefficients to positive values, while for stability purposes it is necessary for    to 

be further restricted to 0      1. 

To summarize the properties of ARCH models: 

 The conditional and unconditional expectations of the error terms are zero; 

 The    set of elements are serially uncorrelated; 

 The errors, however, are not independent and are related through their second moment; 

 The conditional variance can be represented as an autoregressive process, which results in conditional heteroscedastic 

errors; and 

 The conditional heteroscedasticity in the errors will ultimately result in the volatility series being heteroscedastic. 

Generalized Autoregressive Conditional Heteroscedasticity(GARCH) Processes: 

As an extension of Engle’s paper, Tim Bollerslev published a paper titled Generalized Autoregressive Conditional 

Heteroscedasticity in 1986, which allowed the conditional variance to be represented by an ARMA process. It is now 
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assumed that the error process can be represented as follows:      √   , Where the variance of    equals one, and the 

term    can be represented as follows:           
 

      
      

 
      . First, similar to the case of ARCH models, 

the conditional and unconditional means of    are zero given that the elements of the set    follows a white noise process. 

Second, it can now be seen that the conditional variance of    follows an ARMA process (as opposed to only an AR 

process in the case of ARCH models), which is represented by   . This type of model is known as a GARCH (p,q) model 

as it allows for both autoregressive and moving average components in describing the variance. It should be clear that any 

ARCH model can be represented by a GARCH model. 

To Build a volatility model for an asset return series consists of four steps, Ruey S. Tsay, (2005, p106): 

1. Specify a mean equation by testing for serial dependence in the data and, if necessary, building an econometric model 

(e.g., an ARMA model) for the return series to remove any linear dependence. 

2. Use the residuals of the mean equation to test for ARCH effects. 

3. Specify the volatility model if ARCH effects are statistically significant and perform a joint estimation of the mean 

and volatility equations. 

4.  Check the fitted model carefully and refine it if necessary. 

For            be the residuals of the mean equation. The squared series   
  is then used to check for conditional 

heteroscedasticity, which is also known as the ARCH effects. Two tests are available. The first test is to apply the usual 

Ljung–Box statistics Q(m) to the {  
 } series; see McLeod and Li(1983). The null hypothesis is that the first m lags of 

ACF of the   
  series are zero. The second test for conditional heteroscedasticity is the Lagrange multiplier test of Engle 

(1982). 

IV.    RESULTS 

ARIMA model for corporate income tax: 

In order to test whether the assumption of homoscedasticity is valid or not for Corporate Income tax, we firstly estimate a 

correctly specified ARIMA model of the underlying time series. The squared residuals of the obtained regression equation 

would then serve as the basis of whether the construction of an ARCH-GARCH model would be appropriate. We have 

time series data on CIT (Corporate Income Tax) collections in Million Rwandan francs (Rwf). Data are distributed 

quarterly from 1996Q1 to 2015Q1 with summary statistics: Mean of CIT = 10762.64, Standard deviation of CIT = 

10224.37, Minimum of CIT returns = 453.43, and the Maximum of CIT returns = 42568. 

 

Figure 1. Quarterly Corporate Income Tax Collections (in Million Rwf) 

The following observations can be made for Corporate Income Tax collections over the period  

1996 Q1 - 2015 Q1, as shown in Figure 1: 

i. Original CIT collections series is not stationary. 
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ii. The magnitude of seasonal fluctuations increased over the measured period, as indicated by the recurring spikes that 

increases over time. 

iii. Plotted data appear to be related to an exponential function, natural logarithmic transformation can be used for 

smoothing, 

iv. A certain upward trend can be observed, it is likely that the differenced transformation can provide more useful 

information, since the magnitude of corporate income tax collections in the later years is lower the trend implicit in 

the collections of the earlier years. 

An initial attempt to address the non-constant variance and non-stationary of a time series, normally involves applying a 

logarithmic transformation to the time series. The logarithmic transformation of corporate income tax after adjustments is 

shown in Figure 2. 

 

Figure 2. Logarithm of Corporate Income Tax Collections 

Figure 2 shows that the logarithmic transformation, made the variance more uniform over time, also addressed to a certain 

extent the varying magnitude of the seasonal fluctuations as well as forcing the time series to resemble more closely a 

linear trend. It should be noted at this point that the underlying characteristics of the time series will not always conform 

perfectly to the required assumptions, and should be taken into consideration when using a model whose accuracy relies 

on the validity of these assumptions. Following the visual analysis, the next step would be to analyze the autocorrelation 

and partial autocorrelation function of the time series. 

With the requirement of stationarity, the stationary process should have a mean and variance that do not change over time 

and the process does not have trends.  

 

Figure 3. Natural Log of Corporate Income Tax, Correlogram 
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The majority of the autocorrelations are statistically significantly different from zero and ACF is a slow decay function, 

which is indicating non-stationarity, and PACF cuts off at lag 1 or 2.  

Let test whether the natural logarithm of corporate income tax is trend stationary; if this proves to be false, the conclusion 

is made that the natural logarithm of corporate income tax will only become stationary after applying a differencing 

procedure.  

Table 1. Augmented Dickey-Fuller Unit Root Test 

dfuller trend regress lags(2) 

Augmented Dickey-Fuller test for unit root Number of obs = 74 

---------- Interpolated Dickey-Fuller --------- 

 

Test 

Statistic 

1% Critical 

Value  

5% Critical 

Value  
10% Critical Value 

Z(t) -6.433 -4.097 
 

-3.476 
 

-3.166 

MacKinnon approximate p-value for Z(t) = 0.000 

D.LnCIT Coef. Std. Err. T P>|t| [95% Conf. Interval] 

LnCIT 
      

L1. -1.146337 0.1781997 -6.43 0.00 -1.501835 -0.790838 

LD. 0.1993836 0.1363017 1.46 0.15 -0.072531 0.471298 

L2D. 0.1836546 0.1041824 1.76 0.08 -0.024184 0.391493 

_trend 0.0469369 0.0076011 6.17 0.00 0.031773 0.062101 

_cons 8.333503 1.281937 6.50 0.00 5.776108 10.890900 

Based on the results shown in Table 1 of the Augmented Dickey-Fuller Unit Root Test, the null hypothesis that the de-

trended corporate income tax collections contain a unit root can be rejected at all common significance levels. The line 

graph and correlogram of the de-trended corporate income tax collections are shown in Figure 4. 

 

Figure 4. De-Trended Log of Corporate Income Tax Collections, Line and Correlogram 
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Still the line graph and the autocorrelation function correlogram show that the mean of de-trended corporate income tax 

collections continuously revert to the zero level, the time series has always a non-constant variance even after that the 

time series was de-trended. The most appropriate step would be to apply a difference transformation of the de-trended 

corporate income tax collections, which in the case of quarterly data is equivalent to taking the difference between the 

current quarter and the corresponding quarter in the previous year, and applying this procedure to the whole series. The 

resulting output is shown in Figure 5. 

 

Figure 5. De-Trended and Differenced Log of CIT, Line Graph and Correlogram 

Figure 5, which contains the combination of the line graph and the correlogram ACF and PACF of de-trended and 

differenced natural logarithm of corporate income tax, the line graph shows that now logarithm of corporate income tax 

appears to follow a white-noise process with no visible recurring seasonal pattern or trend. Looking at the correlogram, 

however, there is some evidence of non-constant variance in the series, since there are some spikes which are going out of 

critical region. This remaining non-constancy will be addressed in the specification of the model in the form of seasonal 

autoregressive, integrated and moving average terms. By applying an Augmented Dickey-Fuller Unit Root Test with no 

intercept or trend, the null hypothesis that the seasonally differenced and de-trended time series has a unit root can be 

rejected at the 5% significance level, thereby formally confirming stationarity. 

Model Identification: 

Since the described outcome is inconsistent with the given theoretical patterns and does not provide a clear model 

structure, it would make sense to estimate a set of alternative models and then selecting the model that performs best in 

terms of information criteria as well as a set of diagnostic tests. The set of alternative models are shown in Table 2. To 

enable comparability, all the equations were estimated over the period Q2 1996 to Q1 2015. The values in parentheses are 

the p-values of each estimated coefficient. Ljung-Box Q-statistics are also shown to test the null hypothesis that all the 

lags up until the selected lag length are collectively not significantly different from zero. The model to estimate is: 

       +    
 
           

 
     , where      represents the seasonally differenced and de-trended logarithm of 

corporate income tax, the   parameter is used to represent ordinary moving average processes and the   parameter is used 

for ordinary autoregressive terms. 
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Table 2. Estimated ARIMA models 

 
1. ARIMA 

(1,0,0) 

2. 

ARIMA 

(0,0,1) 

3. 

ARIMA 

(1,0,1) 

4. 

ARIMA 

(1,1,1) 

5. 

ARIMA 

(1,1,3) 

6. 

ARIMA 

(1,1,4) 

7. 

ARIMA 

(3,1,1) 

8. 

ARIMA 

(3,1,4) 

Const 
8.695835 

(0.000)* 

8.81522 

(0.000)* 

8.586621 

(0.001)* 

0.0434139 

(0.000)* 

0.04346 

(0.000)* 

0.054433 

(0.03)* 

0.0498652 

(0.002)* 

0.0481982 

(0.000)* 

L1.ar 
0.93882 

(0.000) 
- 

0.994171

8 

(0.000)* 

0.2228497 

(0.039)* 

-0.67887 

(0.000)* 

-

0.135868 

(0.50) 

-0.547345 

(0.000)* 

-

0.6005166 

(0.001)* 

L2.ar - 
0.601266 

(0.000)* 
    

-0.50994 

(0.000)* 

-0.65992 

(0.000)* 

L3.ar       
-0. 637332 

(0.000)* 

-

0.6228793 

(0.000)* 

L1.ma   

-

.5442567 

(0.000)* 

-0.99999 

 

0.08625 

(0.711) 

-

0.391023 

(0.036)* 

-0. 052565 

(0.762) 

-

0.0035198 

(0.986) 

L2.ma     
-0.55607 

 

-

0.111466 

(0.440) 

 
0.1393855 

(0.399) 

L3.ma     
-0.53017 

(0.001)* 

-

0.377216 

(0.004)* 

 

-

0.2087813 

(0.259) 

L4.ma      

0. 

514271 

(0.000)* 

 
0.0645309 

(0.735) 

AIC 105.2453 180.8785 92.33013 71.09018 65.03532 69.37207 62.66624 66.90471 

BIC 112.2767 187.9099 101.7053 78.08238 76.68899 85.6872 76.65064 87.88131 

Q(4) 0.000 0.01 0.02 0.000 0.91 0.01 0.98 0.102 

Q(8) 0.000 0.00 0.037 0.047 0.53 0.061 0.57 0.000 

Q(16) 0.01 0,04 0.000 0.000 0.81 0.87 0.80 0.01 

* Indicates statistical insignificance at 5% level 

Given that both the ACF and PACF show significant spikes at selected lags, it was decided to estimate both 

autoregressive-based as well as moving average-based models. The lags initially chosen to be included in the models were 

based on the ACF and PACF patterns of the differenced and de-trended CIT. The majority of the estimated models 

included a combination of lags 1, 3 and 4. To select a model to use, we look at the significance of the coefficients and also 

at the lower Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), but usually, there are a few 

models that perform similarly. After analyzing all models in table 5, we found that model 7 is the only autoregressive 

based model that performed comparatively well. No evidence of residual autocorrelation was found, although the 

information criteria ruled out Model 7 as the best model among the set of alternatives. It provides an alternative moving 

average representation, and incidentally was also the best model in terms of the information criteria, as well as the Ljung-

Box Q statistics. Model 7 only contains four variables: one ordinary moving average term to account for the serial 

correlation at the third and three auto-regression terms at third lag, all of them they impact negatively to the corporate 

income tax collection at time t. 
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Figure 6. Residuals of Model 7, Correlogram 

The correlogram of residuals of Model 7, shows that overall, no significant autocorrelation remains as the null hypothesis 

of no significant autocorrelation cannot be rejected at conventional significance levels. Only one individual lag exhibited 

statistically significant serial correlation, at the sixteenth lag, but it was decided to not explicitly account for this 

autocorrelation in the model for reasons of keeping the model as parsimonious as possible as well as no evident reason 

why corporate income tax collections in the current period would be correlated to collections that occurred sixteen 

quarters ago. 

Diagnostic Checks for Model Adequacy: 

Based on the probability of Skewness/Kurtosis tests for normality, the null hypothesis that the residuals of Model 7 are 

normally distributed can be rejected at the 5% level of significance. The residuals of Model 7 are following a right skewed 

distribution  as the Skwness is equal to 0.815. While the kurtosis is equal to 5.174 > 3, which indicates that the residuals 

have a leptokurtic distribution, which has a more peaked shape than the normal bell curve.  

To check for parameter stability a particular procedure performed is to estimate the model recursively. The recursive 

estimation period was only commenced from 2000Q4, given that the autoregressive term is present in the model. The 

recursive estimation results for the three coefficients are shown in Figures 8 respectively, along with their 95% confidence 

bands. 

 

Figure 7. Recursive Estimation of AR(3) coefficients 

It can be deduced that the coefficients have been relatively volatile over time. For instance, the AR(1) coefficient 

fluctuated within a range of 0.2 and 0.8 over the measure period, while the AR(2) coefficient predominantly stayed within 

the range of 0 and 4. The autoregressive term appears to have a structural breakdown at 2005q3 time, moving from an 
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autoregressive term value of approximately 0.7 to roughly 0.4. In addition, at 2009q1 time, there appears to be a 

significant shift in the values of all the model coefficients. Most of these apparent shifts in the coefficients can to some 

extent be explained by extreme observations in the de-trended and differenced logarithm of CIT collections. If one looks 

at Figure 7, there does not appear to be any permanent shift in the level of the series. However, there appears to be periods 

in which the relative volatility is more pronounced than in other periods. The assumption can therefore be made that the 

heteroscedastic nature of the residuals of Model 7 may to some extent contribute to the instability of the parameters, and 

may not be the best representation of the underlying data process. It would therefore make sense to examine the 

autocorrelation function and partial autocorrelation function of the squared residuals to test for the presence of ARCH 

errors. 

The Ljung-Box Q-statistics for the squared residuals indicates that the null hypothesis of no autocorrelation can be 

rejected at the 5% level of significance. This informally suggests that overall there are significant heteroscedasticity 

present in the series.  To test for the presence of ARCH errors more formally, this test is also known as the ARCH test. 

ARCH-GARCH model for corporate income tax: 

Table 3. ARCH Heteroscedasticity Test 

Source SS df MS   Number of obs = 76   

  F(1, 74) =   7.96 

Model .517840254 1 .517840254   Prob > F = 0.0062 

Residual 4.74929869 73 .065058886   R-squared= 0.0983 

  Adj.R-squared = 0.0860 

Total 5.26713894 74 .071177553   Root MSE = 0.25507 

  

ehat2 Coef. Std.Err. t P>|t| [95% Conf. Interval] 

  

ehat2 L1. .3134316 .1110959 2.82 0.006 .0920177 .5348455 

_cons .0881481 .0327086 2.69 0.009 .0229599 .1533362 

H0: no ARCH effects      vs.  H1: ARCH(p) disturbance 

The F-statistic p-value shows the significance at the 5% level that the null hypothesis of the model coefficients being 

jointly equal to zero can be rejected, which implies that there are some type of GARCH effect in the residuals given that 

only an individual lagged value was found to be significant. The proper order of the GARCH process will be obtained by 

modeling the time series and the conditional variance at the same time, using maximum likelihood. First, a low order 

GARCH(p,q) process will serve as the base, after which further refinements will be made if necessary. Recall that the 

seasonally differenced and de-trended logarithm of corporate income tax collections was best represented by the 

following ARIMA specification:                              . This equation will be estimated 

simultaneously along with the equation for the variance.  

Table 4. GARCH (1,1) Model 

Sample: 1996q2-2015q1 

  

Number of obs = 76 

  Distribution: t Wald chi2(.) =   

Log likelihood = -37.87319 Prob > chi2 =   

D.LnCIT_detrended 
  OPG         

Coef. Std.Err. z P>|z| [95% Conf. Interval] 

LnCIT_detrended             

_cons 0.013091 0.0388458 0.34 0.036 -0.06305 0.0892274 

ARCH   

arch             

L1. 0.1533595 0.115922 1.32 0.018 -0.07384 0.3805625 

              

garch             

L1. 0.7793728 0.1615559 4.82 0.000 0.462729 1.096017 

_cons 0.0077416 0.0120089 0.64 0.519 -0.0158 0.0312787 
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The coefficient of the mean model is statistically significant at the 5% level. The error distribution of the residuals was 

assumed to follow a student’s t distribution as opposed to the Gaussian (normal) distribution, given the kurtosis 

characteristics of the original ARIMA model. The coefficients in the variance equation are all statistically significant at 

the 5% level, except for the intercept term. Overall the GARCH (1,1) model appears to be a good fit. Compared to the 

ARIMA model, the obtained sum of squared residuals is fairly similar, but the information criteria seem to suggest that 

the GARCH model is superior. In addition, the mean absolute percentage error also shows some improvement. 

Diagnostic Checks for Model Adequacy: 

The residuals of the GARCH (1, 1) model show that the model provides a good fit, with significant autocorrelation in the 

residuals only remaining at the third lag. It can also be seen that the autocorrelation in the squared residuals at the fourth 

lag is significant at the 5% level, while no evidence of autocorrelation can be found in the remaining squared residuals.  

 

Figure 8. Residuals of GARCH (1, 1) Model, Line Graph 

Compared to the residuals of ARIMA Model 7, the residuals of the GARCH (1,1) model are clearly more homoscedastic 

in nature. The overall distribution of the remaining residuals are more closely approximates normality, the degree of 

skewness are closer to zero, while the amount of excess kurtosis reduces to less than two (from twenty initially). 

However, the Jarque-Bera test statistic continues to reject the null hypothesis of normality in the residuals, which to a 

large extent can be explained by the inherent nature of quarterly corporate income tax collections. This will imply that the 

normality assumption will not be appropriate, and a more leptokurtic distribution function should be chosen. 

 

Figure 9. Residuals of GARCH (1, 1) Model, histogram 
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When comparing the results of the GARCH model and the ARIMA, the sum of squared residuals of the GARCH model 

show a minor improvement over that of the ARIMA model, and the information criteria seems to suggest that the 

GARCH model is superior. In addition, the mean absolute percentage error also shows improvement over the ARIMA 

model. 

V.    CONCLUSION 

It has been observed in practice that standard ARIMA model of CIT collections does not appear to fulfill the requirement 

of constant variance, although these models are constructed using the assumption of homoscedasticity. It is hypothesized 

that CIT collections maintain a non-linear relationship with actual tax liability in a given fiscal year, which can be mainly 

attributed to timing issues, the impact of tax loss carry forwards and foreign currency gains/losses as well as the role of 

special tax treatment for certain sectors. 

This non-linear relationship may give rise to situations during which company profits are rising but tax liability remains 

relatively stagnant or decreasing, depending on the assessed position of individual companies. This may lead to more 

heterogeneous payments and increased uncertainty or volatility in total payments received as a result.  The overall impact 

of the above described effect, which is difficult to quantify, may give rise to periods of volatility that significantly 

deviates from the long-run variance, which implies that the variance in CIT collections are likely to be non-constant over 

time.  

An ARIMA model was firstly specified to model the mean of the time series, since the validity of the conditional variance 

model is dependent on the mean equation being correctly specified. The next step was to test for ARCH errors through 

regressing the squared residuals of the mean equation on lagged values of itself and then testing the null hypothesis that 

the lagged squared residuals do not explain movements in the current period squared residuals. The most appropriate 

specification was found to be a GARCH (1,1) model given the characteristics of the time series and the overall fit of the 

model. The ACF and PACF of the residuals and squared residuals were examined to confirm the model adequacy. The 

results confirmed the suspicion that CIT collections do not exhibit constant variance over time, which needs to be taken 

into consideration when creating forward looking estimates of CIT collections.  
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